The page declares the new functionalities of the 3.2 version of the TFEL project. This version has been released along with version 3.1.3 and benefits from all the associated fixes. See this page for details.

The TFEL project is a collaborative development of CEA and EDF dedicated to material knowledge manangement with special focus on mechanical behaviours. It provides a set of libraries (including TFEL/Math and TFEL/Material) and several executables, in particular MFront and MTest.

TFEL is available on a wide variety of operating systems and compilers.

1 Documentation

A new page dedicated to the python bindings of the TFEL libraries is available here.

2 Updates in TFEL libraries

The TFEL project provides several libraries. This paragraph is about updates made in those libraries.

2.1 TFEL/Math

2.1.1 Improvements to the Evaluator class

The Evaluator class is used to interpret textual formula, as follows:

Evalutator ev("sin(x)");
ev.setVariableValue("x",12);
const auto s = ev.getValue();

2.1.1.1 An overload for the getValue method

In the previous example, each variable value had to be set using the setVariableValue method. The new overloaded version of the getValue method can take a map as argument as follows:

Evalutator ev("sin(x)");
const auto s = ev.getValue({{"x",12}});

2.1.1.2 Operator()

Two overloaded versions of the Evaluator::operator() has been introduced as a synonyms for the getValue method:

Evalutator ev("sin(x)");
const auto s = ev({{"x",12}});

2.1.1.3 The getCxxFormula method

The getCxxFormula method returns a string representing the evaluation of the formula in standard C++. This method takes a map as argument which describes how certain variables shall be represented. This method can be used, as follows:

Evalutator ev("2*sin(x)");
std::cout << ev({"x":"this->x"}}) << '\n';

The previous code displays:

sin((2)*(this->x))

This function is the basis of a new functionality of the MFront code generator (inline material properties), see Section 3.4.1 for details.

2.1.1.4 New mathematical functions

The following new mathematical functions have been introduced:

2.1.2 Efficient computations of the first and second derivatives of the invariants of the stress deviator tensor with respect to the stress

Let \(\underline{\sigma}\) be a stress tensor. Its deviatoric part \(\underline{s}\) is:

\[ \underline{s}=\underline{\sigma}-\displaystyle\frac{\displaystyle 1}{\displaystyle 3}\,{\mathrm{tr}\left(\underline{\sigma}\right)}\,\underline{I} =\left(\underline{\underline{\mathbf{I}}}-\displaystyle\frac{\displaystyle 1}{\displaystyle 3}\,\underline{I}\,\otimes\,\underline{I}\right)\,\colon\,\underline{\sigma} \]

The deviator of a tensor can be computed using the deviator function.

As it is a second order tensor, the stress deviator tensor also has a set of invariants, which can be obtained using the same procedure used to calculate the invariants of the stress tensor. It can be shown that the principal directions of the stress deviator tensor \(s_{ij}\) are the same as the principal directions of the stress tensor \(\sigma_{ij}\). Thus, the characteristic equation is

\[ \left| s_{ij}- \lambda\delta_{ij} \right| = -\lambda^3+J_1\lambda^2-J_2\lambda+J_3=0, \]

where \(J_1\), \(J_2\) and \(J_3\) are the first, second, and third deviatoric stress invariants, respectively. Their values are the same (invariant) regardless of the orientation of the coordinate system chosen. These deviatoric stress invariants can be expressed as a function of the components of \(s_{ij}\) or its principal values \(s_1\), \(s_2\), and \(s_3\), or alternatively, as a function of \(\sigma_{ij}\) or its principal values \(\sigma_1\), \(\sigma_2\), and \(\sigma_3\). Thus,

\[ \begin{aligned} J_1 &= s_{kk}=0,\, \\ J_2 &= \textstyle{\frac{1}{2}}s_{ij}s_{ji} = \displaystyle\frac{\displaystyle 1}{\displaystyle 2}{\mathrm{tr}\left(\underline{s}^2\right)}\\ &= \displaystyle\frac{\displaystyle 1}{\displaystyle 2}(s_1^2 + s_2^2 + s_3^2) \\ &= \displaystyle\frac{\displaystyle 1}{\displaystyle 6}\left[(\sigma_{11} - \sigma_{22})^2 + (\sigma_{22} - \sigma_{33})^2 + (\sigma_{33} - \sigma_{11})^2 \right ] + \sigma_{12}^2 + \sigma_{23}^2 + \sigma_{31}^2 \\ &= \displaystyle\frac{\displaystyle 1}{\displaystyle 6}\left[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \right ] \\ &= \displaystyle\frac{\displaystyle 1}{\displaystyle 3}I_1^2-I_2 = \frac{1}{2}\left[{\mathrm{tr}\left(\underline{\sigma}^2\right)} - \frac{1}{3}{\mathrm{tr}\left(\underline{\sigma}\right)}^2\right],\,\\ J_3 &= \det\left(\underline{s}\right) \\ &= \displaystyle\frac{\displaystyle 1}{\displaystyle 3}s_{ij}s_{jk}s_{ki} = \displaystyle\frac{\displaystyle 1}{\displaystyle 3} {\mathrm{tr}\left(\underline{s}^3\right)}\\ &= \displaystyle\frac{\displaystyle 1}{\displaystyle 3}(s_1^3 + s_2^3 + s_3^3) \\ &= s_1s_2s_3 \\ &= \displaystyle\frac{\displaystyle 2}{\displaystyle 27}I_1^3 - \displaystyle\frac{\displaystyle 1}{\displaystyle 3}I_1 I_2 + I_3 = \displaystyle\frac{\displaystyle 1}{\displaystyle 3}\left[{\mathrm{tr}\left(\underline{\sigma}^3\right)} - {\mathrm{tr}\left(\underline{\sigma}^2\right)}{\mathrm{tr}\left(\underline{\sigma}\right)} +\displaystyle\frac{\displaystyle 2}{\displaystyle 9}{\mathrm{tr}\left(\underline{\sigma}\right)}^3\right]. \end{aligned} \]

where \(I_{1}\), \(I_{2}\) and \(I_{3}\) are the invariants of \(\underline{\sigma}\).

\(J_{2}\) and \(J_{3}\) are building blocks for many isotropic yield critera. Classically, \(J_{2}\) is directly related to the von Mises stress \(\sigma_{\mathrm{eq}}\):

\[ \sigma_{\mathrm{eq}}=\sqrt{\displaystyle\frac{\displaystyle 3}{\displaystyle 2}\,\underline{s}\,\colon\,\underline{s}}=\sqrt{3\,J_{2}} \]

The first and second derivatives of \(J_{2}\) with respect to \(\sigma\) can be trivially implemented, as follows:

constexpr const auto id  = stensor<N,real>::Id();
constexpr const auto id4 = st2tost2<N,real>::Id();
// first derivative of J2
const auto dJ2  = deviator(sig);
// second derivative of J2
const auto d2J2 = eval(id4-(id^id)/3);

In comparison, the computation of the first and second derivatives of \(J_{3}\) with respect to \(\sigma\) are more cumbersome. In previous versions TFEL, one had to write:

constexpr const auto id = stensor<N,real>::Id();
constexpr const auto id4 = st2tost2<N,real>::Id();
const auto I1   = trace(sig);
const auto I2   = (I1*I1-trace(square(sig)))/2;
const auto dI2  = I1*id-sig;
const auto dI3  = computeDeterminantDerivative(sig);
const auto d2I2 = (id^id)-id4;
const auto d2I3 = computeDeterminantSecondDerivative(sig);
// first derivative of J3
const auto dJ3  = eval((2*I1*I1/9)*id-(I2*id+I1*dI2)/3+dI3);
// second derivative of J3
const auto d2J3 = eval((4*I1/9)*(id^id)-((id^dI2)+(dI2^id)+i1*d2I2)/3+d2I3);

More efficient implementations are now available using the computeDeviatorDeterminantDerivative and computeDeviatorDeterminantSecondDerivative functions:

// first derivative of J3
const auto dJ3  = computeDeviatorDeterminantDerivative(sig);
// second derivative of J3
const auto d2J3 = computeDeviatorDeterminantSecondDerivative(sig);

2.2 TFEL/Material

2.2.1 Isotropic Plasticity

By definition, \(J_{2}\) and \(J_{3}\) are the second and third invariants of the deviatoric part \(\underline{s}\) of the stress tensor \(\underline{\sigma}\) (see also Section 2.1.2):

\[ \left\{ \begin{aligned} J_2 &= \displaystyle\frac{\displaystyle 1}{\displaystyle 2}{\mathrm{tr}\left(\underline{s}^2\right)}\\ J_3 &= \det(\underline{s}) \\ \end{aligned} \right. \]

The first and second derivatives of \(J_{2}\) with respect to the stress tensor \(\underline{\sigma}\) are trivially computed and implemented (see Section 2.1.2).

The first and second derivatives of \(J_{2}\) with respect to the stress tensor \(\underline{\sigma}\) can be computed respectively by:

2.2.2 Orthotropic plasticity

Within the framework of the theory of representation, generalizations to anisotropic conditions of the invariants of the deviatoric stress have been proposed by Cazacu and Barlat (see [1]):

Those invariants may be used to generalize isotropic yield criteria based on \(J_{2}\) and \(J_{3}\) invariants to orthotropy.

The following functions

\(J_{2}^{0}\), \(J_{3}^{0}\) and their first and second derivatives with respect to the stress tensor \(\underline{\sigma}\) can be computed by the following functions:

Those functions take the stress tensor as first argument and each orthotropic coefficients. Each of those functions has an overload taking the stress tensor as its firs arguments and a tiny vector (tfel::math::tvector) containing the orthotropic coefficients.

2.2.3 \(\pi\)-plane

Comparison of the isosurfaces of various equivalent stresses (Tresca, von Mises, Hosford a=8) in the \pi-plane

The \(\pi\)-plane is defined in the space defined by the three eigenvalues \(S_{0}\), \(S_{1}\) and \(S_{2}\) of the stress by the following equations: \[ S_{0}+S_{1}+S_{2}=0 \]

This plane contains deviatoric stress states and is perpendicular to the hydrostatic axis. A basis of this plane is given by the following vectors: \[ \vec{n}_{0}= \frac{1}{\sqrt{2}}\, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \quad\text{and}\quad \vec{n}_{1}= \frac{1}{\sqrt{6}}\, \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix} \]

This plane is used to characterize the iso-values of equivalent stresses which are not sensitive to the hydrostatic pression.

Various functions are available:

2.3 python bindings

2.3.1 tfel.math module

2.3.1.1 Updated bindings for the stensor class

The following operations are supported:

The following functions have been introduced:

2.3.2 tfel.material module

The following functions are available:

The following script shows how to build an isosurface of the von Mises equivalent stress in the \(\pi\)-plane:

from math import pi,cos,sin
import tfel.math     as tmath
import tfel.material as tmaterial

nmax = 100
for a in [pi*(-1.+(2.*i)/(nmax-1)) for i in range(0,nmax)]:
    s      = tmath.makeStensor1D(tmaterial.buildFromPiPlane(cos(a),sin(a)))
    seq    = tmath.sigmaeq(s);
    s  *= 1/seq;
    s1,s2  = tmaterial.projectOnPiPlane(s);
    print(s1,s2);

The computeHosfordStress function, which compute the Hosford equivalent stress, is available.

The following script shows how to print an iso-surface of the Hosford equivalent stress in the \(\pi\)-plane:

from math import pi,cos,sin
import tfel.math     as tmath
import tfel.material as tmaterial

nmax = 100
for a in [pi*(-1.+(2.*i)/(nmax-1)) for i in range(0,nmax)]:
    s      = tmath.makeStensor1D(tmaterial.buildFromPiPlane(cos(a),sin(a)))
    seq    = tmaterial.computeHosfordStress(s,8,1.e-12);
    s     /= seq;
    s1,s2  = tmaterial.projectOnPiPlane(s);
    print(s1,s2);

The following functions are available:

The following script shows how to print an iso-surface of the Barlat equivalent stress for the 2090-T3 aluminum alloy in the \(\pi\)-plane (see [2]):

from math import pi,cos,sin
import tfel.math     as tmath
import tfel.material as tmaterial

nmax = 100
l1 = tmaterial.makeBarlatLinearTransformation1D(-0.069888,0.079143,0.936408,
                                                0.524741,1.00306,1.36318,
                                                0.954322,1.06906,1.02377);
l2 = tmaterial.makeBarlatLinearTransformation1D(0.981171,0.575316,0.476741,
                                                1.14501,0.866827,-0.079294,
                                                1.40462,1.1471,1.05166);
for a in [pi*(-1.+(2.*i)/(nmax-1)) for i in range(0,nmax)]:
    s      = tmath.makeStensor1D(tmaterial.buildFromPiPlane(cos(a),sin(a)))
    seq    = tmaterial.computeBarlatStress(s,l1,l2,8,1.e-12);
    s     *= 1/seq;
    s1,s2  = tmaterial.projectOnPiPlane(s);
    print(s1,s2);

3 New functionalities in MFront

3.1 The StandardElastoViscoPlasticity brick

This brick is used to describe a specific class of strain based behaviours based on an additive split of the total strain \(\underline{\epsilon}^{\mathrm{to}}\) into an elastic part \(\underline{\epsilon}^{\mathrm{el}}\) and an one or several inelastic strains describing plastic (time-independent) flows and/or viscoplastic (time-dependent) flows: \[ \underline{\epsilon}^{\mathrm{to}}=\underline{\epsilon}^{\mathrm{el}} +\sum_{i_{\mathrm{p}}=0}^{n_{\mathrm{p}}}\underline{\epsilon}^{\mathrm{p}}_{i_{\mathrm{p}}} +\sum_{i_{\mathrm{vp}}=0}^{n_{\mathrm{vp}}}\underline{\epsilon}^{\mathrm{vp}}_{i_{\mathrm{vp}}} \]

This equation defines the equation associated with the elastic strain \(\underline{\epsilon}^{\mathrm{el}}\).

The brick decomposes the behaviour into two components:

Here is a complete usage:

@Brick "StandardElastoViscoPlasticity" {
  // Here the stress potential is given by the Hooke law. We define:
  // - the elastic properties (Young modulus and Poisson ratio).
  //   Here the Young modulus is a function of the temperature.
  //   The Poisson ratio is constant.
  // - the thermal expansion coefficient
  // - the reference temperature for the thermal expansion
  stress_potential : "Hooke" {
    young_modulus : "2.e5 - (1.e5*((T - 100.)/960.)**2)",
    poisson_ratio : 0.3,
    thermal_expansion : "1.e-5 + (1.e-5  * ((T - 100.)/960.) ** 4)",
    thermal_expansion_reference_temperature : 0
  },
  // Here we define only one viscplastic flow defined by the Norton law,
  // which is based:
  // - the von Mises stress criterion
  // - one isotorpic hardening rule based on Voce formalism
  // - one kinematic hardening rule following the Armstrong-Frederick law
  inelastic_flow : "Norton" {
    criterion : "Mises",
    isotropic_hardening : "Voce" {R0 : 200, Rinf : 100, b : 20},
    kinematic_hardening : "Armstrong-Frederick" {
      C : "1.e6 - 98500 * (T - 100) / 96",
      D : "5000 - 5* (T - 100)"
    },
    K : "(4200. * (T + 20.) - 3. * (T + 20.0)**2)/4900.",
    n : "7. - (T - 100.) / 160.",
    Ksf : 3
  }
};

3.2 Logarithmic strain framework support in the cyrano interface

Cyrano is the state of the art fuel performance code developed by EDF (See [3, 4]).

3.2.1 Extension of Cyrano to finite strain analysis

As Cyrano, provides a mono-dimensional description of the fuel rod, its extension to finite strain follows the same treatment used for:

3.2.2 Logarithmic strain framework

Miehe et al. have introduced a finite strain framework based on the Hencky strain measure (logarithmic strain) and its dual stress (see [5]). This framework has been introduced in Code_Aster in 2011 (see [6]).

A behaviour is declared to follow this framework by using the @StrainMeasure keyword:

@StrainMeasure Hencky;

The cyrano interface now provides support for behaviours based on this strain measure.

The interface handles (See [7] for details):

3.3 The generic behaviour interface

The generic behaviour interface has been introduced to provide an interface suitable for most needs.

Whereas other interfaces target a specific solver and thus are restricted by choices made by this specific solver, this interface has been created for developers of homebrew solvers who are able to modify their code to take full advantage of MFront behaviours.

This interface is tightly linked with the MFrontGenericInterfaceSupport project which is available on github: https://github.com/thelfer/MFrontGenericInterfaceSupport. This project has a more liberal licence which allows it to be included in both commercial and open-source solvers/library. This licensing choice explains why this project is not part of the TFEL.

3.4 Various improvements

3.4.1 Inline material properties in mechanical behaviours

Various keywords (such as @ElasticMaterialProperties, @ComputeThermalExpansion, @HillTensor, etc.) expects one or more material properties. In previous versions, those material properties were constants or defined by an external MFront file.

This new version allows those material properties to be defined by formulae, as follows:

@Parameter E0 =2.1421e11,E1 = -3.8654e7,E2 = -3.1636e4;
@ElasticMaterialProperties {"E0+(T-273.15)*(E1+E2*(T-273.15))",0.3}

As for material properties defined in external MFront files, the material properties evaluated by formulae will be computed for updated values of their parameters. For example, if the previous lines were used in the Implicit DSL, two variables young and young_tdt will be automatically made available:

3.5 New command line arguments

3.5.1 The --list-behaviour-bricks argument

The --list-behaviour-bricks argument returns the list of all available behaviour bricks.

$ mfront --list-behaviour-bricks
DDIF2                         (undocumented)
FiniteStrainSingleCrystal     (undocumented)
StandardElasticity            (documented)
StandardElastoViscoPlasticity (undocumented)

3.5.2 The --help-behaviour-brick argument

The --help-behaviour-brick argument returns the help associated with a given behaviour brick.

$ mfront --help-behaviour-brick=StandardElasticity
The `StandardElasticity` brick describes the linear elastic part of
the behaviour of an isotropic or orthotropic material.

The StandardElastoViscoplasticity brick is based on the concepts of:

For each concept, one can query the list of concrete implementations of this concept and the associated help, as in the following example:

$ mfront --list-stress-potentials
- DDIF2           (documented)
- Hooke           (documented)
- IsotropicDamage (undocumented)
$ mfront --help-stress-potential=Hooke
The `Hooke` brick describes the linear elastic part of
the behaviour of an isotropic or orthotropic material.
.....

The following arguments are thus avaiable:

4 New functionalities in MTest

4.1 Events, activation and desactivation of constraints

Defining an event is a way to active/desactivate a constraint, (see @ImposedStrain, @ImposedCohesiveForce, @ImposedOpeningDisplacement, @ImposedStrain, @ImposedDeformationGradient, @NonLinearConstraint).

4.1.1 Defining a new event

The @Event keyword is followed by the name of the event and a time or a list of times (given as an array of values).

4.1.1.1 Example

@Event 'Stop' 1;

4.1.2 Activation and desactivation of constraints

At the end of the definition of a constraint, one may now optionnally set options on the active state of this contraint at the beginning of the computation, the activating events and desactivating events using a JSON-like structure. This structure starts with an opening curly brace ({) and ends with a closing curly brace (}). An option is given by its name, an double-dot character (:) and the value of the option. Consecutive options are separated by a comma , (see below for an example). The following options are available:

4.1.2.1 Example

@ImposedStrain<evolution> 'EXX' {0.:0.,1:1e-3}{
    desactivating_event : 'Stop'
};

4.1.3 User defined post-processings

The @UserDefinedPostProcessing lets the user define is own post-processings.

This keywords is followed by:

4.1.3.1 Example

@UserDefinedPostProcessing 'myoutput.txt' {'SXX','EquivalentPlasticStrain'};

5 Tickets solved during the development of this version

5.1 Ticket #137: Compiling error fix Mfront/Python under Windows

When compiling MFront with python bindings support using Visual Studio 2015 Community, the following error message is triggered:

C:\Codes\tfel\sources\tfel\include\TFEL/Material/PiPlane.ixx(60): error C2131: l'expression n'a pas été évaluée en co
nstante [C:\Codes\tfel\sources\build-vs-2015\bindings\python\tfel\py_tfel_material.vcxproj]

0 Avertissement(s)
1 Erreur(s)

The problem is that constexpr variables are poorly handled by Visual Studio 2015. The constexpr macro was introduced to handle this compiler (it boils down to constexpr for others compilers). The issue can be solved by changing the faulty line as as follows:

constexpr const auto isqrt6 = isqrt2 * isqrt3;

For more details, see: https://sourceforge.net/p/tfel/tickets/137/

5.2 Ticket #112: MTEST outputs

The @UserDefinedPostProcessing lets the user define is own post-processings.

This keywords is followed by:

For more details, see: https://sourceforge.net/p/tfel/tickets/112/

6 Known incompatibilities

6.1 Header files

The following header files have been renamed:

7 References

1.
Cazacu, Oana and Barlat, Frédéric. Generalization of drucker’s yield criterion to orthotropy. Mathematics and Mechanics of Solids. 1 December 2001. Vol. 6, no. 6, p. 613–630. DOI 10.1177/108128650100600603. Available from: https://doi.org/10.1177/108128650100600603
2.
Barlat, F., Aretz, H., Yoon, J. W., Karabin, M. E., Brem, J. C. and Dick, R. E. Linear transfomation-based anisotropic yield functions. International Journal of Plasticity. 1 May 2005. Vol. 21, no. 5, p. 1009–1039. DOI 10.1016/j.ijplas.2004.06.004. Available from: http://www.sciencedirect.com/science/article/pii/S0749641904001160
3.
Thouvenin, Gilles, Baron, Daniel, Largenton, Nathalie, Largenton, Rodrigue and Thevenin, Philippe. EDF CYRANO3 code, recent innovations. In : LWR Fuel Performance Meeting/TopFuel/WRFPM. Orlando, Florida, USA, September 2010.
4.
Petry, Charles and Helfer, Thomas. Advanced mechanical resolution in CYRANO3 fuel performance code using MFront generation tool. In : LWR Fuel Performance Meeting/TopFuel/WRFPM. Zurich, Switzerland, 2015.
5.
Miehe, C., Apel, N. and Lambrecht, M. Anisotropic additive plasticity in the logarithmic strain space: Modular kinematic formulation and implementation based on incremental minimization principles for standard materials. Computer Methods in Applied Mechanics and Engineering. November 2002. Vol. 191, no. 47–48, p. 5383–5425. DOI 10.1016/S0045-7825(02)00438-3. Available from: http://www.sciencedirect.com/science/article/pii/S0045782502004383
6.
EDF. R5.03.24 révision : 10464: Modèles de grandes déformations GDEF_LOG et GDEF_HYPO_ELAS. Référence du {Code} {Aster}. EDF-R&D/AMA, 2013. Available from: http://www.code-aster.org
7.
Helfer, Thomas. Extension of monodimensional fuel performance codes to finite strain analysis using a Lagrangian logarithmic strain framework. Nuclear Engineering and Design. July 2015. Vol. 288, p. 75–81. DOI 10.1016/j.nucengdes.2015.02.010. Available from: http://www.sciencedirect.com/science/article/pii/S0029549315000928