Norton behaviour description

This viscoplastic behaviour is fully determined by the evolution of the equivalent viscoplastic strain \(p\) as a function \(f\) of the Von Mises stress \(\sigma_{\mathrm{eq}}\) : \[\dot{p}=f\left(\sigma_{\mathrm{eq}}\right)=A\,\sigma_{\mathrm{eq}}^{E}\]

where :

\(A\) and \(E\) are declared as material properties .

List of supported Hypotheses

Variables

Material properties

State variables

Parameters

Parameters

Local variables

Code documentation

FlowRule description

The return-mapping algorithm used to integrate this behaviour requires the definition of \(f\) and \({\displaystyle \frac{\displaystyle \partial f}{\displaystyle \partial \sigma_{\mathrm{eq}}}}\) (see [1] and [2] for details).

We introduce an auxiliary variable called tmp to limit the number of call to the pow function

1.
Simo, Juan C and Hughes, Thomas J. R. Computational inelasticity. New York : Springer, 1998. ISBN 0387975209 9780387975207.
2.
Helfer, Thomas, Castelier, Étienne, Blanc, Victor and Julien, Jérôme. 13-020: Le générateur de code mfront : Écriture de lois de comportement mécanique. Note technique. CEA DEN/DEC/SESC/LSC, 2013.