This page describes the DDIF2 brick.

The DDIF2 behaviour is used to describe the brittle nature of nuclear fuel ceramics (see [1–3]) and is usually coupled with a description of the viscoplasticity of those ceramics (See for example [6]).

The DDIF2 brick can be used in place of the StandardElasticity brick. Internally, the DDIF2 brick is derived from the StandardElasticity brick, so the definition of the elastic properties follows the same rules.

This brick is mostly a front-end to the DDIF2 stress potential. The reader may thus refer to this page for a complete description.

References

1.
Michel, Bruno, Sercombe, Jérôme, Thouvenin, Gilles and Chatelet, Rémy. 3D fuel cracking modelling in pellet cladding mechanical interaction. Engineering Fracture Mechanics. July 2008. Vol. 75, no. 11, p. 3581–3598. DOI 10.1016/j.engfracmech.2006.12.014. Available from: http://www.sciencedirect.com/science/article/pii/S0013794406004759
2.
Michel, Bruno, Helfer, Thomas, Ramière, Isabelle and Esnoul, Coralie. 3D continuum damage approach for simulation of crack initiation and growth in ceramic materials. Key Engineering Materials. 2016. Vol. 713. DOI 10.4028/www.scientific.net/KEM.713.155.
3.
Michel, B., Helfer, T., Ramière, I. and Esnoul, C. A new numerical methodology for simulation of unstable crack growth in time independent brittle materials. Engineering Fracture Mechanics. 12 August 2017. DOI 10.1016/j.engfracmech.2017.08.009. Available from: http://www.sciencedirect.com/science/article/pii/S001379441630412X
4.
Monerie, Yann and Gatt, Jean-Marie. Overall viscoplastic behavior of non-irradiated porous nuclear ceramics. Mechanics of Materials. July 2006. Vol. 38, no. 7, p. 608–619. DOI 10.1016/j.mechmat.2005.11.004. Available from: http://www.sciencedirect.com/science/article/pii/S0167663605001882
5.
Salvo, Maxime, Sercombe, Jérôme, Ménard, Jean-Claude, Julien, Jérôme, Helfer, Thomas and Désoyer, Thierry. Experimental characterization and modelling of UO2 behavior at high temperatures and high strain rates. Journal of Nuclear Materials. January 2015. Vol. 456, p. 54–67. DOI 10.1016/j.jnucmat.2014.09.024. Available from: http://www.sciencedirect.com/science/article/pii/S002231151400614X
6.
Salvo, Maxime, Sercombe, Jérôme, Helfer, Thomas, Sornay, Philippe and Désoyer, Thierry. Experimental characterization and modeling of UO2 grain boundary cracking at high temperatures and high strain rates. Journal of Nuclear Materials. May 2015. Vol. 460, p. 184–199. DOI 10.1016/j.jnucmat.2015.02.018. Available from: http://www.sciencedirect.com/science/article/pii/S0022311515001130