
Description of the mechanical behaviour interface to the Abaqus
solver

T. Helfer, Kulbir Singh

S O M M A I R E

1 USAGE OF LIBRARIES GENERATED USING MFRONT . 2

1.1 A GENERIC umat SUBROUTINE . 2

1.1.1 Setting the compiler flags . 2

1.2 NAME OF THE BEHAVIOUR IN THE ABAQUS INPUT FILE . 3

1.3 NOTE ON LIBRARIES LOCATIONS . 3

1.3.1 Under Linux . 3

1.3.2 Under Windows . 3

2 DESCRIPTION OF THE INTERFACE FUNCTIONALITIES . 4

2.1 SUPPORTED MODELLING HYPOTHESIS . 4

2.2 SETTING THE OUT-OF-BOUNDS POLICY . 4

2.3 SETTING PARAMETERS VALUES . 4

3 TEST CASES . 4

3.1 UNIT TESTS IN SMALL STRAIN . 4

3.1.1 Unit tests in finite strain . 4

3.2 ISOTROPIC PLASTIC BEHAVIOUR WITH ISOTROPIC HARDENING ON A NOTCHED BEAM 4

ANNEXE A DEFINITION OF THE CONSISTENT TANGENT OPERATOR FOR FINITE STRAIN BEHAVIOURS . . 10

RÉFÉRENCES . 11

1 USAGE OF LIBRARIES GENERATED USING MFRONT

The mechanisms used by Abaqus to incorporate external subroutines is not suitable for mechanical behaviours
generated by MFront.

We propose a solution which is meant to be flexible and easy to set up for the end-user.

This solution is based on a :
— a generic umat subroutine which aims at loading dynamically libraries generated by MFront.
— a naming convention of the material behaviour in the Abaqus input file which allow the user to specify

both the function to called and the library in which this function is implemented.
This approach allows the user to build MFront libraries before the computations. Those libraries can be shared
among various computations by setting the appropriate environment variable 1.

1.1 A GENERIC umat SUBROUTINE

A generic umat subroutine is delivered with MFront. It is implemented in a file called umat.cpp.

The aim of this subroutine is to dynamically load libraries generated by MFront using the name given to the
behaviour in the input file. This subroutine can with little modifications (under comments in the source file)
be made compatible with other user subroutines so mixing « standard umat » implementations and MFront
implementations shall be feasible.

We must insist : this file is the only source that must be compiled along with Abaqus : generation of MFront
libraries is a different process that is done independently.

As such, abaqus shall be called like this :

abaqus user=umat.cpp [options] inputfile.inp

1.1.1 Setting the compiler flags

The generic umat subroutine is written using the C++-11 standard. Depending on the compiler and compiler
version, appropriate flags shall be added for the compilation. Those flags are defined in the abaqus_v6.env
file that can be overridden by the user.

1 cppCmd = " g++" # <−− C++ compi ler
2 compile_cpp = [cppCmd,
3 ’−c ’ , ’ −fPIC ’ , ’ −w ’ , ’ −Wno−deprecated ’ , ’ −DTYPENAME=typename ’ ,
4 ’−D_LINUX_SOURCE ’ , ’ −DABQ_LINUX ’ , ’ −DABQ_LNX86_64 ’ , ’ −DSMA_GNUC ’ ,
5 ’−DFOR_TRAIL ’ , ’ −DHAS_BOOL ’ , ’ −DASSERT_ENABLED ’ ,
6 ’−D_BSD_TYPES ’ , ’ −D_BSD_SOURCE ’ , ’ −D_GNU_SOURCE ’ ,
7 ’−D_POSIX_SOURCE ’ , ’ −D_XOPEN_SOURCE_EXTENDED ’ , ’ −D_XOPEN_SOURCE ’ ,
8 ’−DHAVE_OPENGL ’ , ’ −DHKS_OPEN_GL ’ , ’ −DGL_GLEXT_PROTOTYPES ’ ,
9 ’−DMULTI_THREADING_ENABLED ’ , ’ −D_REENTRANT ’ ,

10 ’−DABQ_MPI_SUPPORT ’ , ’ −DBIT64 ’ , ’ −D_LARGEFILE64_SOURCE ’ ,
11 ’−D_FILE_OFFSET_BITS=64 ’ , ’ −s td=c++11 ’ ,
12 mpiCppImpl , ’ − I \% I ’]

FIGURE 1 : Declaration of the C++ compiler flags for gcc under LiNuX in the abaqus_v6.env file. The
--std=c++11 flag was added at Line 11.

1. LD_LIBRARY_PATH under Unix systems, PATH under Windows systems

2

For gcc, one have to add the --std=c++11 flag. The modification made to the abaqus_v6.env are reported
on Figure 1 in this case.

1.2 NAME OF THE BEHAVIOUR IN THE ABAQUS INPUT FILE

The name of the behaviour shall define the function to be called and the library in which this function is
implemented. It is important to notice that the name of the behaviour is automatically converted to upper-case
by Abaqus.

The name of the libraries generated by MFront though the Abaqus interface are thus upper-cased. The user
shall thus be aware that he/she must not rename MFront generated libraries using lower-case letters.

By convention, this name is splitted into two parts, separed by the underscore character (’_’). The first part
is the name of library, without prefix (lib) or suffix (.dll or .so). This convention implies that the
library name does not contain an underscore character.

For example, on UNIX systems, if one want to call the ELASTICITY behaviour in libABAQUSBEHAVIOUR.so
library, the name of the behaviour in the Abaqus input file has to be : ABAQUSBEHAVIOUR_ELASTICITY. This
leads to the following declaration of the material :

*Material, name=ABAQUSBEHAVIOUR_ELASTICITY

1.3 NOTE ON LIBRARIES LOCATIONS

As explained above, MFront libraries will be loaded at the runtime time. This means that the libraries must be
found by the dynamic loader of the operating system.

1.3.1 Under Linux

Under Linux, the search path for dynamic libraries are specified using the LD_LIBRARY_PATH variable envi-
ronment. This variable defines a colon-separated set of directories where libraries should be searched for first,
before the standard set of directories.

Depending on the configuration of the system, the current directory can be considered by default.

1.3.2 Under Windows

Under Windows, the dynamic libraries are searched :
— in the current directory ;
— in the directories listed in the PATH environment. This variable defines a semicolon-separated set of

directories.

2 DESCRIPTION OF THE INTERFACE FUNCTIONALITIES

3

2.1 SUPPORTED MODELLING HYPOTHESIS

2.2 SETTING THE OUT-OF-BOUNDS POLICY

2.3 SETTING PARAMETERS VALUES

The values of the parameters can be set in an external text file which is automatically read. If the behaviour
name is Norton, the name of this file must be Norton-parameters.txt. This file must be in the current
directory.

The parameters file must be formatted like this :

ParameterName ParameterValue
OtherParameterName OtherParameterValue
... ...

If a parameter is omitted, this parameter will have its default value.

3 TEST CASES

3.1 UNIT TESTS IN SMALL STRAIN

Isotropic elastic behaviour under tensile loading in small strain

Isotropic elastic behaviour under shear loading in small strain

Isotropic viscoplastic behaviour under tensile loading in small strain

Isotropic plastic behaviour with isotropic hardening under shear loading in small strain

3.1.1 Unit tests in finite strain

Isotropic elastic behaviour under shear loading in finite strain

Saint-Venant Kirchhoff hyperelastic behaviour under tensile loading

Saint-Venant Kirchhoff hyperelastic behaviour under shear loading

3.2 ISOTROPIC PLASTIC BEHAVIOUR WITH ISOTROPIC HARDENING ON A NOTCHED BEAM

ANNEXE A DEFINITION OF THE CONSISTENT TANGENT OPERATOR FOR
FINITE STRAIN BEHAVIOURS

4

Engineering shear strain γxz

Sh
ea

r s
tr

es
s
σ x

z (
M

Pa
)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

1000

2000

3000

4000

5000

6000

7000

8000

Small strain analytical results

MFront implementation

FIGURE 2 : Comparison of the results obtained by the MFront implementation of an isotropic elastic behaviour
and the results obtained with the Abaqus build-in elastic behaviour under shear loading.

5

Axial strain (%)

Ax
ia

l s
tr

es
s
σ z

z (
M

Pa
)

0 0.5 1 1.5 2 2.5
20

22

24

26

28

30

32

34

36 MTest

Abaqus

FIGURE 3 : Comparison of the results obtained with Abaqus and MTest using an MFront implementation of
an isotropic viscoplastic behaviour under tensile loading.

6

Engineering shear strain γxz

Sh
ea

r s
tr

es
s
σ x

z (
M

Pa
)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

200

300

400

500

600

700

"./plasticity-shear-abq.txt" using 6:12

"./plasticity-shear-mfront.txt" using 6:12

FIGURE 4 : Comparison of the results obtained by the MFront implementation of an isotropic plastic behaviour
with isotropic hardening and the results obtained with the Abaqus build-in behaviour under shear loading.

7

Time (a.u.)

Sh
ea

r s
tr

es
s
σ x

z (
M

Pa
)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-4 × 104

-2 × 104

0

2 × 104

4 × 104

6 × 104

8 × 104

Abaqus build-in behaviour

MFront implementation

Small strain analytical results

FIGURE 5 : Comparison of the results obtained by the MFront implementation of an isotropic elastic behaviour
and the results obtained with the Abaqus build-in elastic behaviour under shear loading when the Hughes-
Winglet hypo-elastic formulation is used.

8

Axial Green-Lagrange strain ε
GL

zz (%)

Ax
ia

l C
au

ch
y

st
re

ss

σ
zz

 (M
Pa

)

0 10 20 30 40 50 60 70 80 90

0

10 5

2 × 10 5

3 × 10 5

4 × 10 5

5 × 10 5

6 × 10 5

7 × 10 5

Abaqus

MTest

FIGURE 6 : Comparison of the results obtained the MFront implementation of the Saint-Venant Kirchhoff hy-
perelastic behaviour using Abaqus and MTest.

FIGURE 7 : Comparison of the VON MISES stress distribution obtained with MFront and the results obtained
with the Abaqus build-in plasticity behaviour on a notched beam.

9

FIGURE 8 : Comparison of the stress vs. strain curves obtained with MFront and with the Abaqus build-in
plasticity behaviour on a notched beam.

Abaqus expresses the equilibrium in the rotated frame. To our current knowledge, the derivation of the consistent
tangent operator C is not described in any reference and the expression defined in the Abaqus manuel differs
from the one given in the book of BELYTSCHKO et al. [Belytschko 00].

Let δF
˜

a variation of the deformation gradient at the end of the time step. This variation induces a variation of :

— a variation δL
˜

of the gradient defined by :

δL
˜
= δF

˜
. F

˜

∣∣∣−1

t+∆ t

— a variation δD of the strain rate defined by the symmetric part of δL
˜
.

— a variation δW
˜

of the spin rate defined by the unsymmetric part of δL
˜
.

— a variation of the ∆ τ of the Kirchhoff stress tensor.

For the sake of conciseness, F
˜

∣∣∣
t+∆ t

will be noted F
˜

in the rest of this section.

The abaqus manual defines the consistent tangent operator C as the tangent moduli associated with the
JAUMAN rate of the KIRCHHOFF stress CJ τ divided by J . C satisfies :

J C : δD = CJ τ : δD = δ τ − δW
˜
. τ + τ . δW

˜
(1)

The mechanical behaviour allows us to compute δ τ as :

δ τ =
∂τ

∂F
˜

: δF
˜

The tangent operator
∂τ

∂F
˜

is well defined and given by most mechanical behaviour implementations.

10

To compute the other terms, we will need
∂W

∂F
:

∂W
˜

∂F
˜

=
1

2

∂l
⋆

(
F
˜

−1
)
− ∂r

⋆

(
F
˜

−T
)
.

∂F
˜

T

∂F
˜


The term ∂l

⋆

(
F
˜

−1
)

can be computed using the method tpld of the t2tot2 class. The term ∂r
⋆

(
F
˜

−1
)

can be

computed using the method tprd of the t2tot2 class.

This derivative allow us to compute the remaining terms of Equation (1) :

δW
˜
. τ = ∂l

⋆ (τ)

∂W
˜

∂F
˜

 : δF
˜

τ . δW
˜

= ∂r
⋆ (τ)

∂W
˜

∂F
˜

 : δF
˜

The terms ∂l
⋆ (τ)

∂W
˜

∂F
˜

 and ∂r
⋆ (τ)

∂W
˜

∂F
˜

 can be computed with the tpld and tprd of the t2tot2 class.

Finally, Equation (1) can be recast as :
J C : δD = K : δF

˜

where K is given by :

K =
∂τ

∂F
˜

− ∂l
⋆ (τ)

∂W
˜

∂F
˜

+ ∂r
⋆ (τ)

∂W
˜

∂F
˜


Following HAN [Han 12], the consistent tangent operator C can then be deduced from the K matrix using the
following relationship :

J C
ijkl

= Kijkm Flm

R É F É R E N C E S

[Belytschko 00] BELYTSCHKO TED. Nonlinear Finite Elements for Continua and Structures. Wiley-Blackwell,
Chichester ; New York, 2000.

[Han 12] HAN XU. Modélisation de la fragilisation due au gonflement dans les aciers inoxydables austé-
nitiques irradiés. Thèse : Ecole Doctorale Sciences des Métiers de l’Ingénieur, Paris, France,
2012.

11

	Usage of libraries generated using MFront
	A generic umat subroutine
	Setting the compiler flags

	Name of the behaviour in the Abaqus input file
	Note on libraries locations
	Under Linux
	Under Windows

	Description of the interface functionalities
	Supported modelling hypothesis
	Setting the out-of-bounds policy
	Setting parameters values

	Test cases
	Unit tests in small strain
	Unit tests in finite strain

	Isotropic plastic behaviour with isotropic hardening on a notched beam

	Annexe Definition of the consistent tangent operator for finite strain behaviours
	Références

